AI in robotics: Problems and solutions

We are excited to bring Transform 2022 back in-person July 19 and virtually July 20 – 28. Join AI and data leaders for insightful talks and exciting networking opportunities. Register today!


Robotics is a diverse industry with many variables. Its future is filled with uncertainty: nobody can predict which way it will develop and what directions will be leading a few years from now. Robotics is also a growing sector of more than 500 companies working on products that can be divided into four categories:

  • Conventional industrial robots,
  • Stationary professional services (such as medical and agricultural applications),
  • Mobile professional services (construction and underwater activities),
  • Automated guided vehicles (AGVs) for carrying small and large loads in logistics or assembly lines.

According to the International Federation of Robotics data, 3 million industrial robots are operating worldwide – the number has increased by 10% over 2021. The global robotics market is estimated at $55.8 billion and is expected to grow to $91.8 billion by 2026 with a 10.5% annual growth rate.

Biggest industry challenges

The field of robotics is facing numerous issues based on its hardware and software capabilities. The majority of challenges surround facilitating technologies like artificial intelligence (AI), perception, power sources, etc. From manufacturing procedures to human-robot collaboration, several factors are slowing down the development pace of the robotics industry.

Let’s look at the significant problems facing robotics:

Intelligence

Different real-world environments may become challenging for robots to comprehend and take suitable action. There is no match for human thinking; thus, robotic solutions are not entirely dependable.

Navigation

There was considerable progress in robots perceiving and navigating the environments – for example, self-driving vehicles. Navigation solutions will continue to evolve, but future robots need to be able to work in environments that are unmapped and not fully understood.

Autonomy

Full autonomy is impractical and too distant as of now. However, we can reason about energy autonomy. Our brains require lots of energy to function; without evolutionary mechanisms of optimizing these processes, they wouldn’t be able to achieve the current levels of human intelligence. This also applies to robotics: more power required decreases autonomy. 

New materials

Elaborate hardware is crucial to today’s robots. Massive work still needs to be performed with artificial muscles, soft robotics, and other items that will help to develop efficient machines.

The above challenges are not unique, and they are generally expected for any developing technology. The potential value of robotics is immense, attracting tremendous investment that focuses on removing existing issues. Among the solutions is collaborating with artificial intelligence.

Robotics and AI

Robots have the potential to replace about 800 million jobs globally in the future, making about 30% of all positions irrelevant. Unsurprisingly, only 7% of businesses currently do not employ AI-based technology but are looking into it. However, we need to be careful when discussing robots and AI, as these terms are often assumed to be identical, which has never been the case.

The definition of artificial intelligence tells about enabling machines to perform complex tasks autonomously. Tools based on AI can solve complicated problems by analyzing large quantities of information and finding dependencies not visible to humans. We at ENOT.ai featured six cases when improvements in navigation, recognition, and energy consumption reached between 48% and 800% after applying AI. 

While robotics is also connected to automation, it combines with other fields – mechanical engineering, computer science, and AI. AI-driven robots can perform functions autonomously with machine learning algorithms. AI robots can be described as intelligent automation applications in which robotics provides the body while AI supplies the brain.

AI applications for robotics

The cooperation between robotics and AI is naturally called to serve mankind. There are numerous valuable applications developed so far, starting from household usage. For example, AI-powered vacuum cleaners have become a part of everyday life for many people.

However, much more elaborate applications are developed for industrial use. Let’s go over a few of them:

  • Agriculture. As in healthcare or other fields, robotics in agriculture will mitigate the impact of labour shortages while offering sustainability. Many apps, for example, Agrobot, enable precision weeding, pruning, and harvesting. Powered by sophisticated software, apps allow farmers to analyze distances, surfaces, volumes, and many other variables.
  • Aerospace. While NASA is looking to improve its Mars rovers’ AI and working on an automated satellite repair robot, other companies want to enhance space exploration through robotics and AI. Airbus’ CIMON, for example, is developed to assist astronauts with their daily tasks and reduce stress via speech recognition while operating as an early-warning system to detect issues.
  • Autonomous driving. After Tesla, you cannot surprise anybody with self-driving cars. Nowadays, there are two critical cases: self-driving robo-taxis and autonomous commercial trucking. In the short-term, advanced driver-assistance systems (ADAS) technology will be essential as the market gets ready for complete autonomy and seeks to gain profits from the technology capabilities.

With advances in artificial intelligence coming on in leaps and bounds every year, it’s certainly possible that the line between robotics and artificial intelligence will become more blurred over the coming decades, resulting in a rocketing increase in valuable applications.

Main market tendency

The competitive field of artificial intelligence in robotics is getting more fragmented as the market is growing and is providing clear opportunities to robot vendors. The companies are ready to make the first-mover advantage and grab the opportunities laid by the different technologies. Also, the vendors view expansion in terms of product innovation and global impact as a path toward gaining maximum market share.

However, there is a clear need for increasing the number of market players. The potential of robotics to substitute routine human work promises to be highly consequential by freeing people’s time for creativity. Therefore, we need many more players to speed up the process. 

Future of AI in robotics

Artificial intelligence and robotics have already formed a concrete aim for business investments. This technology alliance will undoubtedly change the world, and we can hope to see it happen in the coming decade. AI allows robotic automation to improve and perform complicated operations without a hint of error: a straightforward path to excellence. Both industries are the future driving force, and we will see many astounding technological inventions based on AI in the next decade.

Sergey Alyamkin, Ph.D. is CEO and founder of ENOT.

DataDecisionMakers

Welcome to the VentureBeat community!

DataDecisionMakers is where experts, including the technical people doing data work, can share data-related insights and innovation.

If you want to read about cutting-edge ideas and up-to-date information, best practices, and the future of data and data tech, join us at DataDecisionMakers.

You might even consider contributing an article of your own!

Read More From DataDecisionMakers

Read More

Sergey Alyamkin Ph.D. ENOT